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general be nonstationary. Moreover, a solution that initially makes poor decisions, and then selects wisely thereafter, can be
average optimal. However, we seek average optimal solutions with optimal short-term, as well as long-term, behavior. Our
approach is to first transform our stochastic problem into one that is deterministic, using the standard device of formulating
the problem as one of choosing a sequence of policies, as opposed to actions. Within this deterministic framework, states
become probability distributions over the original stochastic states. Then, by weakening the notion of state reachability, and
strengthening the notion of efficiency traditionally used in the deterministic framework, we prove that such efficient solutions
exist and are average optimal, thus simultaneously exhibiting both optimal long- and short-run behavior. This deterministic
view of the property of stochastic ergodicity offers the potential to relax the traditional conditions for average optimality that
use coefficients of ergodicity, as well as the opportunity to strengthen the criterion of average optimality through the property
of efficiency.
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1. Introduction. The problem of optimally selecting a sequence of decisions over an infinite horizon is
complicated by the need to select criteria for imposing preferences over the collection of associated cost streams.
Even in the case in which the infinite stream of cost flows is discounted, the resulting discounted total costs will
all be infinite when the costs grow sufficiently fast. In a previous paper, Schochetman and Smith [20] considered
the criterion of optimality termed efficiency (see Ryan et al. [18]) or sometimes finite optimality (Halkin [11]).
A solution is termed efficient if, roughly speaking, it is optimal to each of the states through which it passes.
Efficiency avoids being overselective in that the existence of efficient solutions is ensured by mild topological
conditions. Nor is it underselective, because the requirement that efficient solutions be optimal to each state
constrains prior attained states to be along optimal paths to those states.
For deterministic problems, it was shown in Schochetman and Smith [20] that efficient solutions are aver-

age optimal under a state reachability condition. The reachability condition roughly required the existence of
decision sequences that eventually reach any feasible state sequence from any given feasible state. Of course,
in the stochastic setting, state reachability fails. As we shall see, however, by transforming the problem to a
deterministic setting through replacement of actions by policies (see, for example, Bertsekas and Shreve [3] for
an early use of this device), one can, under appropriate ergodicity conditions, achieve a type of reachability we
term near reachability. Within this deterministic framework, the stochastic states are replaced by deterministic
states corresponding to probability distributions over the original stochastic states. Near reachability holds when
there exist policy sequences that can eventually get arbitrarily close to any feasible state sequence from any
given feasible state. Because near reachability is a weakening of the traditional hypothesis in the deterministic
setting, one needs to correspondingly strengthen the notion of efficiency. We call this notion strong efficiency. It
requires that a policy sequence be optimal among all policy sequences “close” to states along its path. We show
in §3 that strongly efficient strategies exist and are average optimal under near reachability. The development is
extremely general to this point, but the intended principal application area is nonhomogeneous infinite horizon
Markov decision process (MDP) problems, which are addressed in §4. Average cost optimality in the homoge-
nous case has been extensively studied (see, for example, Puterman [16], Tijms [22], Federgruen and Tijms [6],
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Ross [17], Derman [4]). The traditional approach to establishing existence of an average optimal policy is
through an optimality equation that is satisfied by the relative value function under certain ergodicity conditions
(see, for example, Puterman [16], Dynkin and Yushkevich [5], Sennott in Feinberg and Shwartz [8]). Although
the nonhomogeneous case is formally included within the homogeneous case by using the device of augmenting
the state variable with time (see, for example, Bertsekas and Shreve [3]), the resulting homogeneous MDP has a
countably infinite state space that can pose severe analytical and algorithmic challenges. We specifically require
a uniform bound on the number of states within each period for the nonhomogeneous problem we address in
this paper so that this device would yield an MDP problem that would not satisfy our assumptions. Our use of
efficiency and reachability properties for such stochastic decision problems affords the opportunity to potentially
relax traditional ergodicity conditions through their expression within a purely deterministic framework. We
should also note that our approach is restricted to finding optimal average cost policies among the class of all
deterministic policies. This restriction can be important because it has been shown that nonrandomized strategies
may be outperformed by randomized strategies in the case of the upper limit of average costs (see Dynkin and
Yushkevich [5]), whereas in the case of the lower limit of average costs for a fixed initial state, it is sufficient
to consider nonrandomized policies (Feinberg [7]). We will return to this point later in the Discussion.
The paper is organized as follows. The general deterministic average cost optimization problem we consider

is formally introduced in §2. Section 3 introduces the notions of near reachability and strong efficiency for
these problems and shows that every strongly efficient strategy is average optimal in the presence of near
reachability. In §4, we illustrate the general theory with our principal application of average cost optimality in
nonhomogeneous MDP problems by transforming these into deterministic equivalent problems. Here we provide
sufficient conditions for MDP problems to exhibit near reachability. Appendix A gives a formal proof of a
folklore result related to coefficients of ergodicity while in Appendix B we provide a motivating numerical
illustration of these results for a problem in equipment replacement in the presence of machine failures.

2. The general deterministic problem. The problem involves choosing a decision or action yj at the
beginning of each period j = 1�2� � � � . Let Yj = �1�2� � � � � aj� represent the finite discrete set of all possible
decisions (or controls) available in period j , where we assume that the cardinalities of the Yj are uniformly
bounded, i.e., there exists a > 0 such that 1 ≤ aj ≤ a, ∀ j = 1�2� � � � 
 Let S denote the metric space of all
possible (deterministic) states of the system at any time. Let s0 ∈ S denote the initial state of the system
(beginning period 1), and sj−1 the state ending period j − 1 (beginning period j). Let Sj ⊆ S denote the (finite)
set of feasible states ending period j (with S0 = �s0�), so that sj ∈ Sj , for all j = 1�2� � � � 
 Define Yjsj−1�⊆ Yj

to be the (finite) nonempty set of decisions available in period j , given that the system is in state sj−1 ∈ Sj−1 at
the start of period j . Then, selecting decision yj ∈ Yjsj−1� causes the system to transition to state sj ∈ Sj at the
end of period j by means of the state transition equation sj = fjsj−1� yj�, where fj � Fj → Sj is the (given) state
transition function in period j , with domain

Fj =
{
sj−1� yj� ∈ Sj−1× Yj � yj ∈ Yjsj−1�

}
�

and range
Sj =

{
fjsj−1� yj�� sj−1 ∈ Sj−1� yj ∈ Yjsj−1�

}
� ∀ j = 1�2� � � � �

so that each fj is an onto mapping. In particular, we have

S1 =
{
f1s0� y1�� y1 ∈ Y1s0�

}



Let Y denote the product space
∏


j=1 Yj of all possible decision sequences over the infinite horizon (includes
both feasible and infeasible sequences). An infinite decision sequence y = �yj�



j=1 in Y will be called a strategy.

The topological space Y is compact by the Tychonoff theorem and Hausdorff relative to the topology of compo-
nentwise convergence (see Munkres [15]). Because of the discreteness of the Yj , componentwise convergence of
a sequence yields eventual agreement in each component of the sequence, i.e., if yn → y in Y , then for each k,
there exists a positive integer mk such that n ≥ mk implies yn

j = yj , for each j = 1�2� � � � � k
 Moreover, the
product topology on Y is metrizable (Schochetman and Smith [19]). For each N , define y ∈ Y to be feasible
through period N if yj ∈ Yjsj−1�, where sj = fjsj−1� yj�, for all j = 1�2� � � � �N . Denote by XN the subset of Y
consisting of all such y, and by X, those y which are feasible through each N = 1�2� � � � 
 By our assumptions,
the infinite horizon feasible set X is nonempty and closed in Y , that is, X is compact, and

X ⊆XN+1 ⊆XN � ∀N�
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i.e., the XN are nested downward. Moreover,

X =

⋂

N=1
XN = lim

N→

XN �

in the sense of Kuratowski (see Aubin [2], Kuratowski [14]). Now let y = y1� y2� 
 
 
 � be a feasible strategy, i.e.,
y ∈X. For each j ≥ 1, define sjy� to be the state that y passes through at the end of period j . Hence, sjy�=
fjsj−1y�� yj�, for all j ≥ 2, with s1y�= f1s0� y1�. If y ∈XN , then the previous holds for j = 1� � � � �N but not
necessarily for j > N . Moreover, suppose y� z ∈XN , with yj = zj , for all j = 1� � � � �N . Then, sjy�= sjz�, for
all j = 1� � � � �N .
Next, we introduce a cost structure. The cost in period j depends on the state sj−1 of the system and the

chosen decision yj , given that state. Thus, let cjsj−1� yj� denote this real-valued cost, so that cj � Fj → �. We
assume that all costs are uniformly bounded, i.e., that there exists 0< b <
 such that

�cjsj−1� yj�� ≤ b� ∀ sj−1� yj� ∈ Fj� ∀ j = 1�2� � � � 


Let Cx � j� k� denote the total cost of a strategy x ∈Xk from period j through period k inclusive, i.e.,

Cx � j� k�=
k∑

i=j

cisi−1x�� xi�� ∀1≤ j ≤ k� ∀k = 1�2� � � � 


In particular, the total cost of reaching state sN x� at the end of horizon N following strategy x ∈ XN from
period 1 is given by

Cx � 1�N �=
N∑

i=1
cisi−1x�� xi�


Also, the corresponding average cost-per-period is

Ax � 1�N �= 1

N

N∑
i=1

cisi−1x�� xi�=Cx � 1�N �/N 


In particular, if x ∈ X ⊆ XN , then (conservatively) the average cost-per-period of x over the infinite horizon is
given by

Ax�= lim sup
N

Ax � 1�N �= lim sup
N

 Cx � 1�N �/N !


Note that �Ax�� ≤ b� ∀x ∈X.
Our goal is to study the existence of average optimal solutions for our problem, i.e., optimal solutions for the

mathematical programming problem �� given by

inf
x∈X

Ax�
 (�)

The set of such optimal solutions will be denoted by Xa, i.e.,

Xa ≡ {x ∈X� Ax�≤Ay�� ∀y ∈X
}



Although X is closed in Y , Xa need not be closed in Y (Schochetman and Smith [20]). Moreover, it is well-
known that average optimal strategies can be far from optimal over the short-term, i.e., over finite horizons.
Next, we consider “finite horizon” truncations of ��. Define

KN ≡ {x1� � � � � xN � ∈ Y1× · · ·× YN � xj ∈ Yjsj−1�� ∀1≤ j ≤N� sj = fjsj−1� xj�� ∀1≤ j ≤N − 1}�
so that

XN =KN × YN+1× YN+2× · · · 


Hence, each XN is the closed set of all arbitrary infinite extensions of elements of the finite set KN , and XN is
compact, for all N . Note that the first N decisions of every member of X belong to KN . For each N , consider
the following problem �N �:

min
x∈XN

Ax � 1�N �� equivalently, min
x∈XN

Cx � 1�N �
 (�N )
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The real-valued functions x → Ax � 1�N � defined on XN are continuous, because they depend only on KN ,
which is finite. (These functions attain finitely many distinct values on XN .) Let Xa

N denote the set of average
optimal strategies to �N �, i.e.,

Xa
N ≡ �x ∈XN � Cx � 1�N �≤Cy � 1�N �� ∀y ∈XN �= �x ∈XN � Ax � 1�N �≤Ay � 1�N �� ∀y ∈XN ��

which is not empty, for all N . At each stage, there exists a finite number of decisions, and hence, a finite number
of possible strategies to each horizon. However, there exist infinitely many infinite horizon extensions of these
strategies.
In Schochetman and Smith [20], an infinite horizon feasible strategy is defined to be efficient if it is optimal

to each of its attained states. Accordingly, for each N = 1�2� � � � , let Xe
N denote the set of N -horizon feasible

strategies that are efficient through period N , i.e.,

Xe
N ≡ �x ∈XN � Cx � 1�N �≤Cy � 1�N �� ∀y ∈XN such that sN y�= sN x��


These sets are nested downward, i.e.,
Xe

N+1 ⊆Xe
N � ∀N�

by the principle of optimality. Also, let Xe denote the set of infinite horizon efficient strategies, i.e.,

Xe ≡

⋂

N=1
Xe

N = lim
N

Xe
N = lim sup

N

Xe
N = lim inf

N
Xe

N �

where the limits are in the sense of Kuratowski. From Schochetman and Smith [20], it follows that Xe �= �.
(Note that in this reference, Xe and Xe

N are denoted by � and �N , respectively.) In Schochetman and Smith [20],
it is shown that under a bounded reachability condition, we have Xe ⊆ Xa and, in particular, there exists an
average optimal solution.
In the next section we introduce a weakening of bounded reachability that we call near reachability. We show

in §4 that a deterministic equivalent formulation of MDP problems satisfies this property under a mild ergodicity
condition. In §3, we introduce a strengthening of efficiency that we term strong efficiency and establish that
such solutions always exist and are, moreover, average optimal under near reachability.

3. Near reachability, strong efficiency, and average optimality. Recall that for those problems in Scho-
chetman and Smith [20] that have the following bounded time reachability property, efficient solutions (which
exist) are average optimal, i.e., � �=Xe ⊆Xa.

Definition 3.1 (Bounded Reachability (BR)). For problem ��, there exists a positive integer r such
that, for each 1≤ k <
, each s ∈ Sk, and each finite sequence of states tk� � � � � tk+r � in Sk × · · · × Sk+r , there
exists k ≤ l ≤ k+ r , and w ∈Xl for which skw�= s and slw�= tl.
Bounded reachability requires that it be possible to feasibly reach from any feasible state to any sequence of

feasible states within a uniformly bounded time r .
As we shall see in Appendix B, problem �� need not have property (BR). Consequently, to obtain further

results of the form � �= Xe ⊆ Xa for ��, we require a weaker reachability property. In particular, this will
be the case in §4, where we consider a natural deterministic problem corresponding to an infinite horizon,
nonhomogeneous MDP. Accordingly, we introduce the following near (state) reachability property. Let ( denote
a metric on S.

Definition 3.2 (Near Reachability (NR)). For problem ��:
(i) there exists a sequence �bk�



k=1 of positive real numbers with limk bk/k�= 0�

(ii) for each ) > 0, there exists a sequence �lk� )�


k=1 of positive integers, and

(iii) for each x� y ∈X, and positive integer k, there exists z ∈X (depending on k� )� x� y), for which

iiia� skz�= sky��

iiib� (sjx�� sjz�� < )� ∀ j ≥ k+ lk� )� and

iiic� �Cx � k+ 1� j�−Cz � k+ 1� j�� ≤ bk� ∀ j ≥ k+ lk� )


(See Figure 1.)
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Time
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e

Figure 1. Illustration of near reachability.

Near reachability roughly requires that we can reach from any state of a feasible decision sequence to a state
close to a state of any other feasible decision sequence at an average cost that goes to zero as the period of that
state goes to infinity.

Lemma 3.1. For problem ��, property (BR) implies property (NR).

Proof. Suppose Property (BR) holds with r > 0, as in Definition 3.1. Let bk = 2br > 0, ∀k. Given ) > 0,
let lk� ) = r , ∀k. Then limk→
 bk = limk→
2br/k�= 0.
Next, let x� y be elements of X, with k a fixed positive integer. By Property (BR) (for s = sky� and tl = slx�),

there exists k ≤ l ≤ k+ r and w ∈X such that skw�= sky� and slw�= slx�. Define

z≡ w1�w2� � � � �wl� xl+1� xl+2� � � � �


Then z ∈X because slz�= slw�= slx�. Also, skz�= skw�= sky�. If j ≥ l, then sjx�= sjz�, i.e.,

(sjx�� sjz��= 0


In particular, this is true for j ≥ k+ lk� ) = k+ r ≥ l. For such j , we have

Cx � k+ 1� j�=Cx � k+ 1� k+ r�+Cx � k+ r + 1� j�
and

Cz � k+ 1� j�=Cz � k+ 1� k+ r�+Cz � k+ r + 1� j�

However, zi = xi, for i ≥ l+ 1, so that siz�= six� for i ≥ l, and, in particular, for i ≥ k+ r + 1. Thus,

Cz � k+ r + 1� j�=Cx � k+ r + 1� j�� ∀ j ≥ k+ r + 1�
so that

�Cx � k+ 1� j�−Cz � k+ 1� j�� = �Cx � k+ 1� k+ r�−Cz � k+ 1� k+ r��

=
∣∣∣∣

k+r∑
i=k+1

cisi−1x�� xi�−
k+r∑

i=k+1
cisi−1z�� zi�

∣∣∣∣
=
∣∣∣∣

k+r∑
i=k+1

cisi−1x�� xi�− cisi−1z�� zi��

∣∣∣∣
≤  k+ r − k+ 1�+ 1!2b
≤ 2br� ∀ j ≥ k+ r = k+ lk� )
 �
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We turn now to strengthening the notion of efficiency. For fixed ) > 0, N = 1�2� � � � � and s ∈ SN , let

B)s � N �≡ �t ∈ SN � (s� t� < )��

which denotes the (open) ball in SN consisting of all (finitely many) states t that are within ) of s. Also let

C∗
N s�≡min�Cx � 1�N �� x ∈XN � sN x�= s�

and A∗
N s�=C∗

N s�/N , ∀ s ∈ SN . Then C∗
N s� (resp. A∗

N s�), which is attained, is the smallest total (resp. average)
cost of feasibly transitioning from the initial state s0 to state s at the end of period N . Also define

S∗
N )�≡ {s ∈ SN � C∗

N s�≤C∗
N t�� ∀ t ∈ B)s � N �

}
� ∀N = 1�2� � � � �

so that S∗
N )� is the collection of feasible states s at time N having the smallest associated optimal cost C∗

N s�
of any state t within a distance ) of s. Observe that
• if )1 < )2, then S∗

N )2�⊆ S∗
N )1�⊆ SN ;

• S∗
N )� is not empty, because at stage N , there is a finite number of feasible states; and

• if ) is sufficiently small, then B)s � N �= �s� and S∗
N )�= SN , because SN is a finite subset of S.

Definition 3.3 (N -Horizon )-Efficient Strategies). Let ) > 0 and N = 1�2� � � � 
 A strategy x ∈XN is
N -horizon )-efficient if it has least total cost of all strategies y whose states sN y� are within ) of sN x� at
time N , i.e.,

Cx � 1�N �≤Cy � 1�N �� ∀y such that sN y� ∈ B)sN x� � N �


Hence, if x ∈XN is N -horizon )-efficient, then sN x� ∈ S∗
N )�.

Let Xe
N )� denote the set of such strategies. Observe that

• if )1 < )2, then Xe
N )2�⊆Xe

N )1�⊆Xe
N ;

• Xe
N )� is not empty;

• if ) is sufficiently small, then Xe
N )�=Xe

N .
This notion was motivated by the fact that in the probabilistic framework, it may not be possible to reach a
particular state exactly at some future horizon (as is possible in the deterministic case); so, instead of optimality
to a single state, we allow optimality to a group of states in close proximity to the desired state. For each N ,
and each s ∈ SN , let

X∗
N s�≡ {x ∈XN � C∗

N s�=Cx � 1�N �� sN x�= s
}= {x ∈XN � A∗

N s�=Ax � 1�N �� sN x�= s
}



Thus, X∗
N s� is the set of all strategies in XN which attain the given state s at time N at the lowest total

(or average) cost. Observe that X∗
N s� is nonempty and closed. Also, for ) > 0, we have

Xe
N )�= ⋃

s∈S∗
N )�

X∗
N s�⊆XN 


Then Xe
N )� is the set of all strategies in XN that )-efficiently pass through states in S∗

N )� at time N ; it is
closed, compact, and nonempty, since it is a finite union of closed, nonempty sets in compact Y . Observe that
these strategies do not necessarily pass through an )-efficient state (i.e., a state in S∗

j )�� at any period j , before
or after N . Hence, in particular we lack a “principle of optimality” for N -horizon )-efficient solutions, i.e., in
general, Xe

N+1)� �⊆Xe
N )�, for ) > 0.

Lemma 3.2. For all ) > 0, and all N , Xa
N ⊆Xe

N )�⊆XN .

Proof. Fix a positive integer N , ) > 0, and suppose x ∈Xa
N . Then x has the lowest cost (total or average) of

all strategies in XN . Hence, in particular, x has the lowest cost of all strategies to all s in B)sN x� � N �. Thus,
x ∈Xe

N )� by definition. �

For the next definition, recall the following. If Vn ⊆ Y , ∀n, then lim supn Vn is the subset of Y consisting of
those y for which there exist a subsequence �Vnk

�
k=1 of �Vn�


n=1 and a corresponding sequence �yk�



k=1 such that

yk ∈ Vnk
, ∀k, and limk→
 yk = y.

Defintion 3.4 (Strong Efficiency). Define

Xse ≡⋃
)>0

(
lim sup

N

Xe
N )�

)
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Because for all ) > 0, Xe
N )� �= �, there is a sequence xe

N )�, N = 1�2� � � � in compact Y with xe
N )� ∈Xe

N )�,
for all N and hence a convergent subsequence xe

Nk
)�, k = 1�2� � � � with limit point xe)� = lim


k=1 x
e
Nk

)� ∈
lim supN Xe

N )�, so that
Xse �= �


We refer to the elements of Xse as strongly efficient strategies. By contrast, note that

lim sup
N

(⋃
)>0

Xe
N )�

)
= lim sup

N

Xe
N =Xe


The previous definition is justified by the following.

Lemma 3.3. In general, Xse ⊆Xe, i.e.,
⋃

)>0lim supN Xe
N )��⊆ lim supN 

⋃
)>0 X

e
N )��.

Proof. We have Xe
N ⊇Xe

N )�, ∀ ) > 0. Then, because the Xe
N are nested downward to Xe (Schochetman and

Smith [19]),
lim sup

N

Xe
N )�⊆ lim sup

N

Xe
N =Xe� ∀ ) > 0


Hence,

Xse =⋃
)>0

(
lim sup

N

Xe
N )�

)
⊆Xe
 �

The following result is our extension of Theorem 4.2 of Schochetman and Smith [20] to the case of problems
�� for which property (BR) may fail. It is the main result of this section. We show that strongly effficient
strategies are average optimal under property (NR). (In §4, we will apply this result to nonhomogeneous MDPs).

Theorem 3.1 (Average Optimality of Strongly Efficient Strategies). Suppose problem �� has
property NR�. Then, � �=Xse ⊆Xa.

Proof. We showed above that Xse �= �
 Now suppose x ∈Xse, so that

x ∈⋃
)>0

(
lim sup

N

Xe
N )�

)



This implies that there exists ) > 0 such that x ∈ lim supN Xe
N )�. We show that x ∈ Xa, i.e., Ax� ≤ Ay�,

∀y ∈ X. Let y ∈ X. Also let �bk�


k=1 and, for the given ) > 0, let �lk� )�



k=1 be as in the definition of (NR).

Because x ∈ lim supN Xe
N )�, there exist a subsequence �Nn�



n=1 and a corresponding sequence �xn�
n=1 with

xn ∈Xe
Nn

)�, ∀n, such that xn → x in Y , as n→
. Fix k. From §2, the xn eventually agree with x in the first
k components, i.e., there exists mk large enough so that n ≥ mk implies xn

j = xj , ∀ j = 1�2� � � � � k. Choose m
such that m ≥ mk and Nm > k + lk� ). Observe that xm

j = xj for at least the first k components. Note also that
xm ∈Xe

Nm
)� implies that xm ∈X∗

Nm
s�, for some s ∈ S∗

Nm
)�. Hence, sNm

xm�= s,

Axm � 1�Nm�=A∗
Nm

sNm
xm��≤A∗

Nm
t�� ∀ t ∈ B)sNm

xm�� Nm�


By Property (NR) applied to k, y, and xm, there exists z ∈X such that
(iiia) skz�= sky�;
(iiib) (sjx

m�� sjz�� < )� ∀ j ≥ k+ lk� ); and
(iiic) �Cxm � k+ 1� j�−Cz � k+ 1� j�� ≤ bk� ∀ j ≥ k+ lk� ).
Let w denote the strategy

w = y1� � � � � yk� zk+1� zk+2� � � � �


Then w is feasible since skz� = sky�. Note also that sjw� = sjz�, ∀ j ≥ k + 1. First, consider the cost of
following strategy xm through period Nm. Because Nm > k+ lk� ), by property (iiib) we have that

(sNm
xm�� sNm

z�� < )� so that sNm
w�= sNm

z� ∈ B)sNm
xm�� Nm��

i.e.,
(sNm

xm�� sNm
w�� < )


Recall that Xe
Nm

)� is the set of all v ∈ XNm
for which Cv � 1�Nm� ≤ Cu � 1�Nm�, for all u ∈ XNm

such that
sNm

u� ∈ B)sNm
v�� Nm�
 Hence, because xm ∈Xe

Nm
)� and sNm

w� ∈ B)sNm
xm�� Nm�, we have that

Cxm � 1�Nm� ≤ Cw � 1�Nm�=Cw � 1� k�+Cw � k+ 1�Nm�=Cy � 1� k�+Cz � k+ 1�Nm�
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Because xj = xm
j , for all j = 1� � � � � k, we have skx�= skx

m� and

Cxm � 1�Nm� = Cxm � 1� k�+Cxm � k+ 1�Nm�

= Cx � 1� k�+Cxm � k+ 1�Nm��

which implies that
Cx � 1� k�+Cxm � k+ 1�Nm�≤Cy � 1� k�+Cz � k+ 1�Nm��

i.e,

0 ≤ Cy � 1� k�−Cx � 1� k�+Cz � k+ 1�Nm�−Cxm � k+ 1�Nm�

≤ Cy � 1� k�−Cx � 1� k�+ ∣∣Cz � k+ 1�Nm�−Cxm � k+ 1�Nm�
∣∣


By (iiic) on the previous page, because Nm > k+ lk� ), we have that∣∣Cz � k+ 1�Nm�−Cxm � k+ 1�Nm�
∣∣≤ bk


Thus,
0≤Cy � 1� k�−Cx � 1� k�+ bk� i.e., Cx � 1� k�≤Cy � 1� k�+ bk


Because k is arbitrary,

Cx � 1� k�

k
≤ Cy � 1� k�+ bk

k
� ∀k� so that Ax�= lim sup

k

Cx � 1� k�

k
≤ lim sup

k

Cy � 1� k�+ bk

k



For bounded sequences, we have from Goldberg [9] that

lim sup
k

Cy � 1� k�+ bk

k
≤ lim sup

k

Cy � 1� k�

k
+ lim sup

k

bk

k
� i.e., Ax�≤Ay�+ lim sup

k

bk

k
�

where lim supkbk/k�= 0. Hence, Ax�≤Ay�. Because y is arbitrary in X, x ∈Xa. �

4. Application to nonhomogeneous MDPs. Our goal in this section is to apply the results of §3 to a
stochastic problem recast as a deterministic optimization problem �� ��, where � � is the stochastic optimiza-
tion problem corresponding to a general nonhomogeneous MDP. In particular, we give sufficient conditions, in
terms of coefficients of ergodicity, for the MDP to have property (NR), i.e., for �� �� to have property (NR).
Consider a system in which
• I = �1�2� � � � �m� is the (finite, discrete) set of MDP states i of the system in any period j;
• 00i� is the probability that the initial MDP state of the system is i, so that

0≤ 00i�≤ 1� ∀1≤ i ≤m�

m∑
i=1

00i�= 1� and

00 =  001� � � � 00m− tuple�! ∈�m

is the associated probability mass function (pmf).
• Dji� is the set of decisions that are admissible in period j , given that the system is currently in MDP state

i ∈ I . We assume that the cardinality �Dji�� of Dji� is at most c, ∀ i, and ∀ j . Also,

Dj ≡Dj1�× · · ·×Djm�� ∀ j = 1�2� � � � �

is the set of all admissible policies or decision rules 3j in period j , so that the cardinalities �Dj � of the Dj are
uniformly bounded by cm.

• pji� k � d� is the probability, in period j , that the system transitions to MDP state k ∈ I , given that it
was in MDP state i ∈ I ending period j − 1, and admissible decision d ∈ Dji� was selected. Necessarily,∑m

k=1 pji� k � d�= 1. For each 3j ∈Dj , define the stochastic m×m matrix Pj3j� as follows:

 Pj3j�!ik ≡ pji� k� 3ji��� ∀ i� k ∈ I�

so that
m∑

k=1
 Pj3j�!ik = 1� ∀ i = 1� � � � �m� ∀ j = 1�2� � � � 
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• qji� k � d� is the cost in period j of choosing decision d ∈ Dji�, given that the system is in MDP state
i ∈ I ending period j − 1 and transitions to MDP state k at the end of period j . We assume that the qji� k � d�
are uniformly bounded, i.e., we assume that there exists b > 0 sufficiently large so that

�qji� k � d�� ≤ b� ∀d ∈Dji�� ∀ i� k ∈ I� ∀ j = 1�2� � � � 


If we let 7ji � d� denote the expected cost, in period j , of choosing decision d ∈Dji�, given that the system is
in MDP state i ∈ I ending period j − 1, then

7ji � d�=
m∑

k=1
qji� k � d� ·pji� k � d�� and

�7ji � d�� ≤ b� ∀d ∈Dji�� ∀ i ∈ I� ∀ j = 1�2� � � � 


Thus, at the beginning of decision epoch j , the system is in some MDP state i ∈ I , and the decision maker
chooses a decision d ∈Dji�, generating an expected cost 7ji � d�. The evolution from the current MDP state i
to the new MDP state k depends on the transition probabilities pji� k � d� which, in turn, depend on the current
state i, the new state k, the decision d, and the period j .
The set D =∏


j=1Dj of all strategies is then the feasible region for our optimization problem. To describe
the objective function for this problem, let x = xj�



j=1 be an arbitrary element of D. Then the implementation

of strategy x generates a sequence of MDP states. At the end of period j − 1, such a state is determined by the
decision rule sequence x1� � � � � xj−1. Let Ljx1� � � � � xj−1� denote the (random) MDP state in I ending period j ,
determined by the feasible strategy x, with j-th decision xjLjx1� � � � � xj−1��. Consequently, the expected cost
of strategy x in period j if we end period j in state Ljx1� � � � � xj−1� is

9jx�= 7j

(
Ljx1� � � � � xj−1�� xjLjx1� � � � � xj−1��

)
�

whose expected value is given by E 9jx�!=∑i∈I 7ji� xji��PLjx1� � � � � xj−1�= i�. Over the first N periods,
the total expected cost of strategy x ∈X is given by

∑N
j=1E 9jx�!, and the average expected cost-per-period by

1/N�
∑N

j=1E 9jx�!

Our infinite horizon, average cost, stochastic optimization problem � � is then given by

min
x∈D

Ax�� � �

where

Ax�≡ lim sup
N

{
1
N

N∑
j=1

E 9jx�!

}
� ∀x ∈D


To proceed, we recast problem � � in a form �� ��, which is a particular case of problem ��. Our goal
is to give sufficient conditions for � �, i.e., �� ��, to admit an average optimal strategy that is also strongly
efficient. Considerable effort has been devoted to solving problem � � for just an average optimal strategy. Note
that certain standard techniques, such as policy and value iteration, fail because the problem is time-dependent. It
is possible to transform the nonhomogeneous problem into one that is homogeneous, but the state space becomes
infinite, and there are no general algorithms for this case. Some methods for solving the nonhomogeneous MDP
include a form of value iteration designed to recursively uncover a sequence of policies by solving increasingly
longer horizon problems. A more common approach involves a rolling horizon procedure, where a horizon N
is fixed, the N -period problem is solved, and the initial policy is implemented. Then the procedure is repeated
from the new state, and so on. The pitfall with this procedure is that the sequence of policies attained will not
in general be optimal. In Alden and Smith [1], a bound on the error generated by the rolling horizon procedure
is given.
Not surprisingly, we intend to apply the main result Theorem 3.1 of §3 to problem � �. Define the deter-

ministic states of �� �� to be probability mass functions, i.e., pmf-states. Accordingly, let S =  0�1!m with
metric ( given by

(0� ;�≡ �0 − ;�
 = max
1≤i≤m

�0i�− ;i��� ∀0�; ∈�m�

s0 = 00, S0 = �00�, and, for all j = 1�2� � � � , let

Yj ≡Dj< sj = 0j =  0j1�� � � � �0jm�!<

Sj ≡
⋃

0j−1∈Sj−1

{
0j · � 0j−1� 3j�� 3j ∈Dj

}⊆�m�
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where each 0j · � 0j−1� 3j� is the pmf-state given by

0jk � 0j−1� 3j�=
m∑

i=1
0j−1i� ·pji� k � 3ji��� ∀k ∈ I�

so that
m∑

k=1
0jk � 0j−1� 3j�= 1� ∀0j−1 ∈ Sj−1� ∀3j ∈Dj�

and, in particular,
S1 =

{
01 · � 00� 31�� 31 ∈D1

}



Moreover, for each j = 1�2� � � � , we have

Yj0j−1�= Yj =Dj� ∀0j−1 ∈ Sj−1<

Fj = Sj−1×Dj< and

cj0j−1� 3j� =
m∑

i=1
0j−1i� ·7ji� 3ji��

=
m∑

i=1

(
0j−1i� ·

m∑
k=1

qji� k� 3ji�� ·pji� k� 3ji��

)

=
m∑

i=1

m∑
k=1

0j−1i� · qji� k� 3ji�� ·pji� k� 3ji���

so that ∣∣cj0j−1� 3j�
∣∣ ≤ m∑

i=1

m∑
k=1

∣∣0j−1i� · qji� k� 3ji�� ·pji� k� 3ji��
∣∣

=
m∑

i=1

m∑
k=1

0j−1i� ·
∣∣qji� k� 3ji��

∣∣ ·pji� k� 3ji��

≤ b
m∑

i=1

m∑
k=1

0j−1i� ·pji� k� 3ji��= b
m∑

i=1

(
0j−1i� ·

m∑
k=1

pji� k� 3ji��

)

= b
m∑

i=1
0j−1i�= b� ∀0j−1 ∈ Sj−1� ∀3j ∈Dj


(Note that even if Pj3j� = Pj=j�, it’s possible that cj0j−1� 3j� �= cj0j−1�=j�, for some 0j−1 ∈ Sj−1 and
3j�=j ∈ Dj . Thus, we do not identify 3j with Pj3j�, even if Pj is one-to-one.) Consequently, the transition
functions

fj � Sj−1×Dj → Sj

are given by
fj0j−1� 3j�= 0j−1Pj3j�� ∀0j−1 ∈ Sj−1� ∀3j ∈Dj


For each x ∈D,
0jx�= 00P1x1�P2x2�� � � Pjxj�

is then the probability distribution of the MDP states of strategy x at the end of period j , Furthermore,

X = Y =D =

∏

j=1
Dj�

so that all strategies are feasible,

cj0j−1x�� xj�=E 9jx�!=
m∑

i=1
7ji� xji�� ·0j−1x�i�� ∀ j = 1�2� � � � � and

Cx � 1�N �=
N∑

j=1
cj0j−1x�� xj�=

N∑
j=1

m∑
i=1

7ji� xji�� ·0j−1x�i�
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is the total cost of strategy x ∈D through period N . Finally,

Ax�= lim sup
N

1
N

N∑
j=1

Cx � 1� j�= lim sup
N

{
1
N

N∑
j=1

m∑
i=1

7ji� xji�� ·0j−1x�i�

}

is the average cost-per-period of any strategy x in D over the infinite horizon. Note that

�Cx � 1�N �� ≤ bN and �Ax�� ≤ b� ∀x ∈D


We leave it to the reader to verify that these ingredients satisfy all of the hypotheses of §2. The resulting
optimization problem �� �� has the same feasible strategies and objective function values as does the stochastic
optimization problem � �. Therefore, in particular, the average optimal strategies are the same.
Recall that a coefficient of ergodicity is a function defined on the m×m stochastic matrices P =  puv!, with

values in the closed interval  0�1!, and is continuous relative to the topology of coordinate-wise convergence
(Seneta [21]). Two particularly well-known examples are given by

>P�= 1− max
1≤v≤m

{
min
1≤u≤m

puv

}
and ?P�= 1

2
max

1≤u� v≤m

{ m∑
k=1

�puk −pvk�
}



The following is the main result of this section (where D =X).

Theorem 4.1 (Sufficient Conditions for Property (NR)). Suppose there exists 0 < @ < 1, such that
?Pjxj�� ≤ @, ∀x ∈ D, ∀ j = 1�2� � � � 
 Then property (NR) holds for problem �� ��. Consequently, � �=
Dse ⊆ Da and problem �� ��, equivalently problem � �, admits an average optimal solution that is also
strongly efficient.

Proof. For each k, and ) > 0, define

lk� ) =
⌈
ln)/2m�

ln@�

⌉
> 0 and bk =

2bm

1−@
� ∀k = 1�2� � � � �

so that
lim
k→


bk

k
= 0


Fix k, let x� y ∈D, and define
z= y1� y2� � � � � yk� xk+1� xk+2� � � � �

(which is in D =∏

j=1Dj , i.e., z is feasible), so that 0kz�= 0ky�, for all 1≤ j ≤ k. We next show that z has

the desired properties. Given n= 1�2� � � � and 1≤ j ≤ n, we obtain the stochastic matrices Pjxj�� � � � � Pnxn�
as above. For convenience, define

T n
j x�≡

{
Pjxj�Pj+1xj+1�� � � Pnxn�� for 1≤ j ≤ n�

J � for j > n�

where J is the m × m identity matrix. Note that 0jx� = 00T
j
1 x�. Next, starting at stage k, we compare, at

some later time h, the distance between the states resulting from following x versus z. Observe that for h≥ k,
0hx�= 0kx�T h

k+1x�. Then

(0hx��0hz�� =
∥∥0hx�−0hz�

∥∥

 = ∥∥0kx�T h

k+1x�−0kz�T
h
k+1z�

∥∥



= ∥∥0kx�T h
k+1x�−0kz�T

h
k+1x�

∥∥

 = ∥∥0kx�−0kz��T

h
k+1x�

∥∥

�

because strategy z is the same as strategy x after stage k. By Seneta [21],

?T h
k+1x��= ?

(
Pk+1xk+1�Pk+2xk+2�� � � Phxh�

)≤ ?Pk+1xk+1��?Pk+2xk+2��� � � ?Phxh��≤ @h−k�

∀h≥ k+ 1

Thus, for any column in T h

k+1x�, all entries are within 2@h−k of each other. By Seneta [21],

(0hx��0hz��=
∥∥0kx�−0kz��T

h
k+1x�

∥∥

 ≤ 2@h−km
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Because @ < 1, i.e., ln@� < 0, we may let h be sufficiently large such that 2@h−km < ), i.e.,

h > k+ ln)/2m�

ln@�
implies h≥ k+

⌈
ln)/2m�

ln@�

⌉
= k+ lk� )


This establishes part (iiib) of Definition 3.2.
We next show that the cost condition (iiic) holds for the bk. That is, we show that,∣∣Cx � k+ 1� j�−Cz � k+ 1� j�∣∣≤ bk� ∀ j ≥ k+ lk� )


For j ≥ k+ 1, we have

Cx � k+ 1� j� =
j∑

h=k+1

m∑
i=1

(
0h−1x�i� ·7hi� xhi��

)= j∑
h=k+1

m∑
i=1

(
00T

h−1
1 x��i� ·7hi� xhi��

)

=
j∑

h=k+1

m∑
i=1

(
00T

k
1 x�T h−1

k+1 x�
)
i� ·7hi� xhi��

)



Similarly,

Cz � k+ 1� j� =
j∑

h=k+1

m∑
i=1

(
00T

k
1 z�T h−1

k+1 z��i� ·7hi� zhi��
)

=
j∑

h=k+1

m∑
i=1

(
00T

k
1 z�T h−1

k+1 x��i� ·7hi� xhi��
)
�

because zh = xh, for k+ 1≤ h≤ j . Hence,

∣∣Cx � k+ 1� j�−Cz � k+ 1� j�∣∣ = ∣∣∣∣
j∑

h=k+1

m∑
i=1

(
00T

k
1 x�− T k

1 z��T h−1
k+1 x��i� ·7hi� xhi��

)∣∣∣∣
≤

j∑
h=k+1

m∑
i=1

∣∣(00T k
1 x�− T k

1 z��T h−1
k+1 x�

)
i� ·7hi� xhi��

∣∣
=

j∑
h=k+1

m∑
i=1

∣∣(00T k
1 x�− T k

1 z��T h−1
k+1 x�

)
i�
∣∣ · ∣∣7hi� xhi��

∣∣
≤

j∑
h=k+1

m∑
i=1
2b ·?T h−1

k+1 x�� · �00�1�

by Lemma A.3 of Appendix A. Thus, because �00�1 = 1, we have

∣∣Cx � k+ 1� j�−Cz � k+ 1� j�∣∣ ≤ j∑
h=k+1

2bm ·?T h−1
k+1 x��= 2bm

j∑
h=k+1

?T h−1
k+1 x��≤ 2bm

j∑
h=k+1

@h−k−1

= 2bm
j−k−1∑
h=0

@h < 2bm

∑

h=0
@h = 2bm

1−@
= bk� ∀ j ≥ k+ 1


In particular, ∣∣Cx � k+ 1� j�−Cz � k+ 1� j�∣∣≤ bk� ∀ j ≥ k+ lk� )


For the second part, recall Theorem 3.1. �

In general, ?P� is difficult to evaluate for general P . The following result is of some help, because >P� is,
in general, easier to calculate.

Corollary 4.1. If, for 0< @ < 1, we have >Pjxj��≤ @, ∀x ∈D, ∀ j = 1�2� � � � , then the conclusions of
Theorem 4.1 hold.

Proof. In general, ? ≤> (Seneta [21]). �

See Appendix B for a numerical illustration of these results for a problem in equipment replacement in the
presence of machine failures.
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5. Discussion. Although not explored in this paper, we conjecture that for our problem, the introduction
of randomized policies (when transformed to our deterministic framework) can deliver exact reachability and
thereby yield convergence of randomized efficient solutions through liminf, as well as limsup inclusion, i.e.,
full Kuratowski convergence. The reason for this belief is that the inclusion of randomized policies serves to
enlarge the set of strategies to the convex hull of purely deterministic strategies when viewed in the deterministic
framework. Nearest point selections, as in Schochetman and Smith [20], could then lead to a sequence of policies
and strategies that converges to an average optimal solution, so that policy convergence, as well as average value
convergence, would hold. A forward algorithm would then be in hand for recursive discovery of a strongly
efficient, and hence average optimal, nonstationary strategy.

Appendix A. Coefficients of ergodicity. We establish a useful property of the coefficient of ergodicity ?,
which plays an important role in the proof of Theorem 4.1. This property is used to prove Theorem 6 of Hopp
et al. [13]. However, to our knowledge, there exists no rigorous proof of the result (see Hopp [12] for its original
statement). Consequently, we felt it necessary to provide a detailed proof of this property.
If v is any element of �m, define

maxv�≡max
{
vi� i = 1�2� � � � �m

}
and minv�=min

{
vi� i = 1�2� � � � �m

}



Lemma A.1. For any v in �m, we have

maxv�−minv�= max
1≤j� k≤m

�vj − vk�


Proof. Left to the reader. �

Lemma A.2. If p, q are arbitrary probability distributions on �1�2� � � � �m�, and r ∈�m, then∣∣∣∣
m∑

j=1
pj�− qj��rj

∣∣∣∣≤maxr�−minr�

Proof. We have

m∑
j=1

pj�rj ≤maxr� ·
m∑

j=1
pj�=maxr� and

m∑
j=1

qj�rj ≥minr� ·
m∑

j=1
qj�=minr��

so that
m∑

j=1
pj�− qj��rj =

m∑
j=1

pj�rj −
m∑

j=1
qj�rj ≤maxr�−minr�


Because p and q are arbitrary, we may interchange them to get

m∑
j=1

qj�−pj��rj ≤maxr�−minr��

so that
m∑

j=1
pj�− qj��rj ≥minr�−maxr�=−maxr�−minr��


This completes the proof. �

Lemma A.3. Let P =  Pij !, Q=  Qij !, and R=  Rij ! be arbitrary stochastic m×m matrices. Recall that

?R�= 1
2 max
1≤i� j≤m

{ m∑
k=1

�Rik −Rjk�
}



If v ∈�m, then

�vP −Q�R�
 ≤ 2?R��v�1
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Proof. Note that, in particular, the rows of P and Q are probability distributions on �1�2� � � � �m�. Fix
i = 1�2� � � � �m. Then

vP −Q�R�i =
m∑

h=1

m∑
j=1

vjPjh −Qjh�Rhi�

so that

�vP −Q�R�i� =
∣∣∣∣

m∑
h=1

m∑
j=1

vjPjh −Qjh�Rhi

∣∣∣∣=
∣∣∣∣

m∑
j=1

m∑
h=1

vjPjh −Qjh�Rhi

∣∣∣∣=
∣∣∣∣

m∑
j=1

vj ·
( m∑

h=1
Pjh −Qjh�Rhi

)∣∣∣∣
≤

m∑
j=1

(
�vj � ·

∣∣∣∣
m∑

h=1
Pjh −Qjh�Rhi

∣∣∣∣
)

≤
m∑

j=1
�vj � ·

(
max
1≤h≤m

Rhi − min
1≤h≤m

Rhi

)
(by Lemma A.2)

= �v�1 ·
(
max
1≤h≤m

Rhi − min
1≤h≤m

Rhi

)
= �v�1 · max

1≤j� h≤m
�Rji −Rhi� (by Lemma A.1)

≤ �v�1 · max
1≤j h≤m

m∑
i=1

�Rji −Rhi� ≤ 2?R��v�1


This completes the proof, because i is arbitrary. �

Appendix B. An example in equipment replacement with unreliable machines. We illustrate the results
of §4 in the particular context of equipment replacement in the presence of machine failures.
We begin by assembling the parameters of the problem to form the expressions for the costs and transition

probabilities for the generic model of §4. Consider a machine that is either working (state 1) or has failed
(state 2), so that m= 2, I = �1�2�, S =  0�1!2, and

(0� ;�= �0 − ;�
 =max
{�01�− ;1��� �02�− ;2��}


If, at the start of period j , the machine is working, we may either replace it (decision 1) or keep it (decision 2),
so that c = 2,

Dj1�= �1�2�� Dj2�= �1�� Dj = �1�1�� 2�1��� ∀ j = 1�2� � � � �

and X = D = �1�1�� 2�1��
. Suppose that initially, the machine is equally likely to be working or not, i.e.,
00 =  12

1
2 !. For each j = 1�2� � � � � let

 pji�1 � d� pji�2 � d�!=




[
1
2

1
2

]
if i = 1� d = 2�[

2
3

1
3

]
if i = 1� d = 1�[

1
3

2
3

]
if i = 2� d = 1


For example, at the start of any period j , if the machine is working i = 1�, and we choose to replace it d = 1�,
then at the start of period j + 1, the machine will be working k = 1� with probability 2/3 and will have failed
k = 2� with probability 1/3. Thus, for each j , we have

Pj1�1��=
[

2
3

1
3

1
3

2
3

]
and

Pj2�1��=
[

1
2

1
2

1
3

2
3

]



We assume that there are no salvage values and that the costs qji� k � d�, for all j , i = 1�2, d ∈ Dji�, are
arbitrary—with the exception that they are uniformly bounded by b > 0. Consequently, the resulting non-
homogeneous MDP is a special case of that studied in the previous section.
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Let �� denote the resulting machine failure version of � �, with ���� the corresponding deterministic
version. For this model, we have

[
0j1� 0j−1� 3j� 0j2� 0j−1� 3j�

]=




0j−1


 2

3
1
3

1
3

2
3


 � for 3j = 1�1��

0j−1


 1

2
1
2

1
3

2
3


 � for 3j = 2�1�;

and

cj0j−1� 3j�=
[
0j−11� 0j−12�

][7j1� 3j1��

7j2� 3j2��

]
� ∀0j−1 ∈ Sj−1� ∀3j ∈Dj� ∀ j = 1�2� � � � 


Now let x = xj�


j=1 ∈D be the strategy defined by xj = 1�1�, ∀ j , i.e., we replace the machine in each period

whether it is working or not. Then

Pjxj�=
[

2
3

1
3

1
3

2
3

]
� T h

j x�=
[

2
3

1
3

1
3

2
3

]h−j+1
� ∀h≥ j� and

0jx� = 00P1x1�� � � � � Pjxj�= 00T
j
1 x�

=
[
1
2

1
2

][ 2
3

1
3

1
3

2
3

]j

= [ 12 1
2

][ 2
3

1
3

1
3

2
3

][
2
3

1
3

1
3

2
3

]j−1

= [
1
2

1
2

][ 2
3

1
3

1
3

2
3

]j−1
= · · · = [ 12 1

2

]
� ∀ j = 1�2� � � � 


In fact, it is immediately obvious that x is the only strategy in D whose state in every period is  12
1
2 !. Hence,

being the unique strategy passing through these states, it is necessarily efficient, i.e., x ∈De.
If we also let y = yj�



j=1 ∈D be the strategy defined by

yj =



2�1�� for j = 1�

1�1�� for j > 1�

i.e., we initially do not replace a working machine and then replace each period thereafter, then

Pjyj�=





 1

2
1
2

1
3

2
3


 � for j = 1�


 2

3
1
3

1
3

2
3


 � for j > 1<

T h
j y�=

[
2
3

1
3

1
3

2
3

]h−j+1
� ∀h≥ j ≥ 2<

01y� = 00P1y1�=
[
1
2

1
2

][ 1
2

1
2

1
3

2
3

]
= [ 5

12
7
12

]
<

and, by matrix diagonalization,

0j+1y� = 00P1y1�P2y2�� � � � � Pj+1yj+1�= 00P1y1�T
j+1
2 y�= 01y�T

j+1
2 y�

= [
5
12

7
12

][ 2
3

1
3

1
3

2
3

]j

= [ 5
12

7
12

]( 1√
2

[
1 1

−1 1

][
1
3 0

0 1

]
1√
2

[
1 1

−1 1

])j
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= 1
2

[
5
12

7
12

][ 1 1

−1 1

][
1
3 0

0 1

]j [
1 −1
1 1

]
= 1

2

[
5
12

7
12

][ 3−j + 1 −3−j + 1
−3−j + 1 3−j + 1

]

= 1
2

[
5
12

7
12

](
3−j

[
1 −1

−1 1

]
+
[
1 1

1 1

])
= 1

3j

[− 1
12

1
12

]+ [ 12 1
2

]
� ∀ j ≥ 1


Thus,

0jy� �= 0jx�� ∀ j ≥ 1� and lim
j→


0jy�= [ 12 1
2

]
�

i.e., the states of strategy y can never equal the corresponding states of x, but they can come arbitrarily close,
for a sufficiently large horizon. Consequently, property (BR) fails for problem ���� so that property (BR) is
too strong for applicability for all MDP problems. However, as we shall see next, problem ���� does have
property NR�.
Let w = wj�



j=1 be an arbitrary element of D. Then, for the coefficient of ergodicity >, we have

>Pjwj��= 1− max
1≤k≤m

{
min
1≤i≤m

pji� k� wji��
}
≤ 1− 1

3 = 2
3 < 1�

because
pji� k� wji�� ∈

{
1
3 �

2
3 �

1
2

}
� ∀ i� k� j�w


Hence, the hypothesis of Corollary 4.1 holds because @= 2/3< 1.
Consequently, for this case of ��, we have that � �=Dse ⊆Da by Theorem 3.1 so that this is an example of

an MDP with a strongly efficient strategy that is also average optimal. Note that these results are valid for any
cost structure for ��, as long as cost data are uniformly bounded.
We next show that there exist cost structures for which strategy x, although efficient is not average optimal

and, hence, not strongly efficient, i.e., x � Da, so that x � Dse also. For this purpose, assume that, for all
j = 1�2� � � � ,

 qji�1 � d� qji�2 � d�!=




 rq rq!� for i = 1� d = 2,

 q q!� for i = 1� d = 1,

 q q!� for i = 2� d = 1�

for arbitrary q > 0 and 0< r < 1. Then

7j1� xj1��= 7j1 � 1�= qj1�1 � 1� ·pj1�1 � 1�+ qj1�2 � 1� ·pj1�2 � 1�= 2
3q + 1

3q = q� and

7j2� xj2��= 7j2 � 1�= qj2�1 � 1� ·pj2�1 � 1�+ qj2�2 � 1� ·pj2�2 � 1�= 1
3q + 2

3q = q�

so that

cj0j−1x�� xj� = 7j1 � xj1�� ·0j−1x�1�+7j2� xj2�� ·0j−1x�2�

= 1
2q + 1

2q = q� ∀ j = 1�2� � � � 


Therefore,

Ax�= lim sup
N

1
N

Cx � 1�N �= lim sup
N

1
N

N∑
j=1

cj0j−1x�� xj�= q


Now define z= zj�


j=1 by zj = 2�1�, ∀ j . Then

Pjzj�= Pj2�1��=
[

1
2

1
2

1
3

2
3

]
�

7j1 � zj1��= 7j1 � 2�= qj1�1 � 2� ·pj1�1 � 2�+ qj1�2 � 2� ·pj1�2 � 2�= 1
2q + 1

2q = q� and

7j2� zj2��= 7j2 � 1�= qj2�1 � 1� ·pj2�1 � 1�+ qj2�2 � 1� ·pj2�2 � 1�= 1
3q + 2

3q = q�

so that

cj0j−1z�� zj� = 7j1� zj1�� ·0j−1z�1�+7j2� zj2�� ·0j−1z�2�

= q ·0j−1z�1�+ q ·0j−1z�2�� ∀ j = 1�2� � � � 
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Hence, by matrix diagonalization,

0jz� = 00Pjzj�
j

= [
1
2

1
2

][ 1
2

1
2

1
3

2
3

]j

= [ 12 1
2

]([1 3
1 −2

]
·
[
1 0

0 1
6

]
· 15
[
2 3

1 −1

])j

= [
1
2

1
2

] ·
[
1 3

1 −2

]
·
[
1 0

0 1
6

]j

· 15
[
2 3

1 −1

]
= 1

5

[
1 6−j/2

][2 3

1 −1

]

= 1/6j
[
1
10 − 1

10

]+ [ 25 3
5

]
� ∀ j ≥ 1


Thus, 0jx� �= 0jz�, for all j = 1�2� � � � 
 Moreover,

cj0j−1z�� zj� = rq
(
2
5 +

6−j

10

)
+ q

(
3
5
− 6−j

10

)

= q

5
2r + 3�+ q

10 · 6j
r − 1��

which implies that

1
N

Cz � 1�N � = 1
N

N∑
j=1

q

5
2r + 3�+ 1

N

N∑
j=1

qr − 1�
10 · 6j

= q

5
2r + 3�+ qr − 1�

10
· 1
N

N∑
j=1

1
6j

= q

5
2r+3�+ qr−1�

10
· 1
N

[
1−1/6N+1

1−1/6 −1
]
= q2r+3�

5
+ 6qr−1�

50N
− 6qr−1�
50N ·6N+1 −

qr−1�
10N




Thus,

Az�= lim sup
N

1
N

Cz � 1�N �= q2r + 3�
5

< q =Ax��

because 0< r < 1. Therefore, x is not average optimal for this cost structure, i.e., x �Da. Consequently, x �Dse

either (Theorem 4.1). Hence, we see that (nonempty) Dse is strictly contained in De, which is not contained
in Da, in general.
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